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Abstract

Background: In April 2009, a new strain of H1N1 influenza virus, referred to as pandemic influenza A (H1N1) was
first detected in humans in the United States, followed by an outbreak in the state of Veracruz, Mexico. Soon
afterwards, this new virus kept spreading worldwide resulting in a global outbreak. In China, the second Circular of
the Ministry of Health pointed out that as of December 31, 2009, the country’s 31 provinces had reported 120,000
confirmed cases of H1N1.

Methods: We formulate an epidemic model of influenza A based on networks. We calculate the basic
reproduction number and study the effects of various immunization schemes. The final size relation is derived for
the network epidemic model. The model parameters are estimated via least-squares fitting of the model solution
to the observed data in China.

Results: For the network model, we prove that the disease-free equilibrium is globally asymptotically stable when
the basic reproduction is less than one. The final size will depend on the vaccination starting time, T, the number
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Each individual in the community can be regarded as a
vertex in the network, and each contact between two indi-
viduals is represented as an edge (line) connecting the ver-
tices. The number of edges emanating from a vertex —
that is, the number of contacts a person has — is called
the degree of the vertex. Therefore, we assume that the
population is divided into n distinct groups of sizes Nk (k
= 1, 2, …, n) such that each individual in group k has
exactly k contacts per day. If the whole population size is
N (N = N1+ N2 + ... + Nn), then the probability that a uni-
formly chosen individual has k contacts is P(k) = Nk/N,
which is called the degree distributions of the network.
Empirical studies have shown that many real networks
have scale-free (SF) degree distributions P(k) ≈ k–g



van den Driessche and Watmough [20], we note that only
compartments Ek, Ak and Ik are involved in the calcula-
tion of R0. In the infection-free state P0, the rate of
appearance of new infections F and the rate of transfer of
individuals out of the two compartments V are given by
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Using the concepts of next-generation matrix [20], the
reproduction number is given by R0 = r(FV



We now compute the time derivative of L(t) along the
solutions of system (1)-(5). It is seen that
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If Sk(0) = Sk0, Ik(0) = Ik0, Ek(0) = Ek0, Ak(0) = Ak0, then
the final size relation becomes
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The final size with vaccination
If vaccination follows a uniform immunization strategy,
we have
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Conclusions
Network models can capture the main features of the
spread of the H1N1. In this paper, using a network epi-
demic model for influenza A (H1N1) in China, we cal-
culated the basic reproduction number R0 and
discussed the local and global dynamical behaviors of
the disease-free equilibrium. The effects of various
immunization schemes were studied and compared. A
final size relation was derived for the network epidemic
models. The derivation depends on an explicit formula
for the basic reproduction number of network disease
transmission models. The transmission coefficients are
estimated through least-squares fitting of the model to
observed data of the cumulative number of hospital
notifications. We also gave the estimated value for the
reproduction number for influenza A (H1N1) in China
as R0 = 1.6809.
Parameters were estimated during the period when

the vaccination was not applied. For these parameters,
we found that g = 0.85, which means that 15% of the
exposed become infected during the early course of the
endemic. Although vaccination commenced in China in
November 2009, we were not able to compare the real
data with the model projections due to lack of data.
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